Укр|Eng|Рус
Ukraine
Catalog   /   TVs & Video   /   TVs

Comparison Mystery MTV-2223LT2 22 " vs Mystery MTV-1929LT2 19 "

Add to comparison
Mystery MTV-2223LT2 22 "
Mystery MTV-1929LT2 19 "
Mystery MTV-2223LT2 22 "Mystery MTV-1929LT2 19 "
from 2 451 ₴
Outdated Product
from 3 099 ₴
Outdated Product
User reviews
3
0
1
0
Size22 "19 "
Display
Screen surfaceglossmatte
Resolution
1920x1080 px /Full HD/
1366x768 px /HD Ready/
Brightness250 cd/m²230 cd/m²
Static contrast1 000:11 000:1
Response time7 ms5 ms
Dynamic scene index50 fps50 fps
Multimedia
Sound power6 W10 W
Number of speakers22
Digital tuner
DVB-T2 (terrestrial)
DVB-C (cable)
DVB-T2 (terrestrial)
DVB-C (cable)
Teletext
Connectors
Inputs
USB
 
composite /1 input and 1 output/
USB
VGA
composite
HDMI22
Outputs
mini-Jack (3.5 mm) headphones
coaxial (SPDIF)
mini-Jack (3.5 mm) headphones
coaxial (SPDIF)
General
Wall mountVESA 100x100 mm
Power consumption
38 W /1W standby/
30 W /1W standby/
Color
Added to E-Catalogaugust 2014september 2013

Size

The optimal size of the TV depends primarily on the distance from which it is planned to watch. If the diagonal on the screen is too small, it will be difficult to see the details, you will have to strain; if too large, the image will be much larger than the field of view, which is also undesirable. The best option is the situation when the distance to the TV corresponds to 3 - 4 of its diagonals: for example, for a size of 32 "(80 cm), the recommended distance is about 2.5 - 3 m.

The size of the diagonal of the screen affects both the cost of the TV and its general equipment. So, among models smaller than 32" there are often TVs without Smart TV and other advanced features; TVs for 32 - 55" can be both quite simple and advanced; and a large screen, more than 55", in most cases is combined with extensive additional functionality.

Now the following popular diagonals are on the market: 32 ", 39 - 40", 43", 49", 49 - 50", 55", 65", 75" and more than 80".

Screen surface

The type of coating used on the TV screen.

Matte. Historically, the first type of coating for LCD screens, which is often found today. Screens with such a coating generally have average characteristics of brightness, saturation and colour reproduction quality, in terms of these indicators they are inferior to glossy counterparts. However, the matte coating has one important advantage: it has virtually no glare from ambient light. In some situations, this can be an important advantage — for example, if the TV is installed opposite the window. And for some users it is more pleasant to look at the screen without glare, albeit relatively dim.

Glossy. A coating designed to improve the brightness and colour quality of the visible image compared to matte screens. The creators have managed to achieve this goal: "glossy" screens really provide rich, vibrant colours and a brighter image. The key disadvantage of such screens is the appearance of glare from ambient light on them — this can ruin the whole viewing experience. Because of this, the classic glossy coating is practically not used today, anti-glare solutions have taken its place (see below).

Glossy (anti-glare). Modification of the glossy coating, created, as the name implies, in order to eliminate the main drawback of the classic gloss — glare from external lighting. This is not...to say that such screens do not glare at all, but there are much less reflections on them than on ordinary glossy ones. As for the image quality, it is at least not much worse, and often even better (especially since such coatings are constantly being improved). Thanks to all this, most modern TVs of all price categories are equipped with anti-glare screens.

Resolution

Screen resolution - its size in pixels horizontally and vertically. Other things being equal, a higher resolution provides better image quality, but such a screen costs more and requires relevant content.

The set of resolutions found in modern TVs is quite extensive, but they can be roughly divided into several groups: HD, Full HD, Ultra HD 4K, Ultra HD 5K and Ultra HD 8K. Here are the main features of each option:

— HD. Screens designed for HD 720p. The standard frame size in such a video is 1280x720, however, for a number of reasons, most HD TVs have somewhat larger sizes — 1366x768. In addition, this category usually includes models with resolutions from 1280x768 to 1680x1050, as well as 1024x768 screens. In general, HD 720p resolutions are mostly found on low-cost TVs with relatively small screens.

— Full HD. TVs designed for Full HD 1080p video, with a frame size of 1920x1080. Most models from this category have exactly this screen resolution — 1920x1080; other options are noticeably less common — in particular, 1920x1200 and 2560x1080. In general, Full HD screens provide good detail at a relatively low cost, making them extremely popular in mid-range models and inexpensive large-format TVs.

— Ultra HD 4K. This format provides different options in resolutions, however, for TVs, the...actual standard is 3840x2160, other options are almost never found. In general, this is a fairly high resolution, which is typical mainly for premium models; a common feature of such models is the large size — from 40" and more.

— Ultra HD 5K. The Ultra HD image format is more advanced than 4K, but it is extremely rare in TVs — these are mainly ultra-wide models with a resolution of 5120x2160.

— Ultra HD 8K. A standard that assumes a size of about 8K pixels horizontally; one of the options for this resolution, found in TVs — 7680x4320. Thus, UHD 8K is twice the size of 4K on each side and four times the total number of pixels, resulting in extremely sharp and detailed images. On the other hand, such screens are very expensive, despite the fact that nowadays even 4K is already considered a very advanced standard. Plus, there are not many video devices and content that meet this standard. Therefore, 8K TVs are still extremely rare, they include mostly high-end flagship models with a size of at least 65".

Brightness

The maximum brightness of the image provided by the TV screen.

The image on the screen should be bright enough so that you do not have to strain your eyes unnecessarily to view it. However, too high brightness is undesirable — it will also lead to fatigue. The optimal brightness level depends on the surrounding conditions: the more intense the ambient light, the brighter the TV screen should be. So, on a sunny day, the screen may have to be “turned up” to the maximum, and in the evening, in dimmed light, a relatively dim image will be more comfortable. In addition note that large screens require higher brightness, since they are designed for a greater distance from the viewer.

Thus, the higher the number in this paragraph, the greater the margin of brightness this model has, the better it will show itself in intense ambient light. The lowest indicator sufficient for more or less comfortable viewing in any conditions is 300 cd/m² for models with a diagonal of up to 32", 400 cd/m² for models in the range of 32 – 55" and 600 cd/m² for large screens of 60" and more. In this case, the brightness margin anyway will not be superfluous. But with lower indicators, you may have to darken the room somewhat for comfortable viewing.

Response time

The response time can be described as the maximum time required for each pixel of the screen to change brightness, in other words, the longest time from the receipt of a control signal to the pixel until it switches to the specified mode. The actual switching time may be less — if the brightness changes slightly, it can be calculated in microseconds. However, it is the longest time that matters — it describes the guaranteed response speed of each pixel.

First of all, the frame rate is directly related to the response time (see the relevant paragraph): the lower the response time, the higher the frame rate can be provided on this sensor. However, the actual frame rate may be less than the theoretical maximum, it all depends on the TV. Also note that the overall image quality in dynamic scenes depends primarily on the frame rate. Therefore, we can say that the response time is an auxiliary parameter: the average user rarely needs this data, and in the specifications they are given mainly for advertising purposes.

Sound power

The nominal power of the sound produced by the TV's sound system.

The larger the screen and the greater the estimated distance to the viewer, the more powerful the sound system must be in order to be heard normally. Manufacturers take this moment into account, moreover, most often they also provide a solid volume margin. So if a TV is bought for home viewing in a quiet, calm environment, you can not pay much attention to the sound power: it is guaranteed to be enough for such a usage. It makes sense to specifically look for models with high-power speakers for a noisy environment — for example, a cafe or other public space. Detailed recommendations on this matter can be found in special sources, but here we note that even in such cases, connecting external speakers can be a good alternative.

Inputs

The TV's connectivity is based not only on wireless technologies (described above), but also on a wired connection. In particular, video transmission can be carried out through VGA, Component, Composite, SCART connectors. Some of them also provide sound transmission, in addition to which there may be a mini-Jack (3.5 mm). and other ports for interconnection with external devices. More about them:

USB. Connector for connecting external peripheral devices. The presence of USB means at least that the TV is capable of playing content from flash drives and other external USB media. In addition, there may be other ways to use this input: recording TV programs to external media, connecting a WEB camera (see same paragraph), keyboard and mouse to use the built-in browser and other software, etc. The specific set of options depends on the functionality of the TV, it should be specified separately in each case.

Card reader. A device for working with memory cards, most often in SD format. The main use of the card reader is to play content from such cards on a TV; such an opportunity is especially convenient for viewing materials from photo and video cameras — it is in such devices...that memory cards are widely used. There may be other ways to use this function — for example, recording from the broadcast or even exchanging files between the card and the TV's storage. It is worth bearing in mind that SD cards have several subtypes — original SD, SD HC and SD XC, and not all of them may be supported by the card reader.

— LAN. Standard connector for wired connection to computer networks (both local and the Internet). Mostly found in models with Smart TV support (including Android TV devices; see related paragraphs). A wired connection is less convenient than Wi-Fi, not as aesthetically pleasing, so manufacturers place more emphasis on a wireless connection, as a result of which the speed indicators of the LAN connector are not indicated, and in some cases may be unacceptable for 4K broadcasts.

— VGA. Analogue video input, also known as D-sub 15 pin. Initially, the VGA interface was developed for computers, but due to the emergence of more advanced standards like HDMI (see below) and technical limitations (the maximum resolution is only 1280x1024, the inability to transmit sound), it is considered obsolete and is used less and less. So it makes sense to specifically look for a TV with such a connector mainly in cases where it is planned to be used as a monitor for an outdated computer or laptop.

— Component. Video interface with 3 connectors, each of which is responsible for its part of the video signal. This separation provides high bandwidth and noise reduction, making the component input the most advanced analogue video interface available today. So, it is capable of working with HD, and in terms of image quality it significantly surpasses S-Video and composite connector, closely approaching HDMI (see below).

— Composite. Combined analogue audio/video interface, it is this connector that is usually called the A/V input. Actually, there are usually three connectors in the composite interface — separately for video and the left/right channel of stereo sound (on TVs with one speaker that do not support stereo, one of the audio connectors is missing). The image quality when working through such an input is not high, and HD formats are not supported at all; on the other hand, the composite interface is extremely widespread not only in modern, but also in outdated equipment like VHS video recorders.

— SCART. The large universal multimedia connector, the largest connector used in today's consumer-grade video equipment. Works mainly with an analogue signal, which is why it is considered obsolete; however, still not falling into disuse. One of the reasons for this "longevity" is versatility: SCART does not have its "own" signal format, this standard only describes the connector. In fact, having the appropriate cables, you can connect different types of incoming signals to such an input — composite, S-Video, etc. Moreover, it is technically possible for such a connector to work as an output (for the same signal types). However the specifications of SCART connectors in different TVs may be different, so a specific list of compatible interfaces needs to be specified separately.

— COM port (RS-232). A connector originally developed for computer technology. It is used as a control on TVs: by connecting the device to a computer, you can control TV parameters and various settings, sometimes quite specific and inaccessible when using a conventional remote control.

— Mini-Jack (3.5 mm). A connector most commonly used as an analogue audio (line) input. One of the options for using such a connector is to connect audio for a video signal transmitted via VGA, S-Video (see above) or another interface that does not support audio transmission. However, with the appropriate cable, any audio source can be connected to the 3.5 mm mini-Jack port, including a mobile device like a smartphone or a pocket player. In this case, the sound can be played both through the speakers of the TV, and on external speakers connected to it. Another option for using this input is to connect a microphone for chatting via Skype.

Wall mount

Most TVs have a VESA wall mount which may vary in size. The basis for such mount is a rectangular plate with four holes for screws in the corners. The main characteristic of such a mount is the distance between the holes — it is measured along the sides of the rectangle and is expressed in two numbers. The original VESA format is 100x100, these mounts are used for most medium-sized LCD TVs. For small screens, 75x75 mounts are provided, for large ones — 200x200 and more (up to 800x400).

However, there are also models that are equipped with a standard (proprietary) mount from the manufacturer. Mostly these are either ultra-thin TVs or designer lines. Anyway, the mount in the kit is suitable only for the selected model.

Power consumption

The electrical power normally consumed by the TV. This parameter strongly depends on the screen size and sound power (see above), however, it can be determined by other parameters — primarily additional features and technologies implemented in the design. It is worth noting that most modern LCD TVs are quite economical, and most often this parameter does not play a significant role — in most cases, power consumption is about several tens of watts. And even large models with a diagonal of 70 – 90" consume about 200 – 300 W — this can be compared with the system unit of a low-power desktop PC.
Price graph
Mystery MTV-2223LT2 often compared