Укр|Eng|Рус
Ukraine
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Sony HXR-NX5E vs Sony DCR-VX2200E

Add to comparison
Sony HXR-NX5E
Sony DCR-VX2200E
Sony HXR-NX5ESony DCR-VX2200E
Compare prices 2Compare prices 1
User reviews
TOP sellers
Featuresprofessionalprofessional
Media typeflash (memory card)Mini-DV
Sensor
Sensor typeCMOSCMOS
Number of sensors33
Sensor size1/3"1/3"
Number of megapixels1.121.12
Effective megapixels1.041.03
Camera lens
Focal length (35mm equivalent)29.5 — 722 mm29.5 — 722 mm
Aperturef/1.8 — f/3.4f/1.6 — f/3.4
Optical zoom20 x20 x
Digital zoom30 x30 x
Image stabilizationopticaloptical
Filter diameter72 mm72 mm
Manual focus
Video shooting
Video resolution1920x1080 px1440x810 px
Frame frequency50 fps
Recording formats
MPEG-4 AVC/H.264 AVCHD /MPEG-2 PS/
Video recording speed
FX 24Mbps, FH 17Mbps, HQ 9Mbps /LP 5 Mbps/
Minimum illuminance
1.5 lux /with NightShot function — 0 lux/
1.5 lux
Night shooting
Shutter speed1/3 — 1/10000 s1/3 — 1/10000 s
White balanceauto, capturing, outdoor, indoorauto, outdoor, indoor, setting A, setting B
Auto exposure10
Scene programmes
twilight, twilight portrait (photo) /candlelight, sunrise and sunset, fireworks, landscape, portrait, flare, beach, snow/
Sound recordingDolby Digital 5.1
PCM 16 bit 48 kHz /12bit 32kHz/
Photo
Number of megapixels1.16
Max. photo size1440x810 px
Picture while shooting
Screen
Screen size3.2 "3.2 "
Screen resolution921 K pixels921 K pixels
Touch screen
Features
Features
viewfinder
hot shoe
built-in speaker
GPS module
detachable microphone
direct print
viewfinder
hot shoe
built-in speaker
 
 
 
Memory and sockets
Memory card supportMS, MS Pro, MS Pro HG, SD, SDHC, SDXC (Class 4 or higher)MS Duo, MS Pro Duo, MS PRO-HG Duo
Connectors
component
USB
HDMI
S-Video
 
SDI
AV output
 
XLR microphone input /2 pcs/
headphone jack
 
 
 
S-Video
IEEE 1394
 
AV output
microphone input
 
headphone jack
Battery
Battery typeNP-F570
Battery capacity2200 mAh
Battery life6.25 h
General
Remote control
 /MT-831/
Dimensions (WxHxD)173x193x449 mm349x178x169 mm
Weight2200 g2100 g
Color
Added to E-Catalogjune 2010november 2009

Media type

The type of primary media used by the camera to store captured video/photo.

Flash (memory card). One of the most popular types of storages in modern electronics, it is widely used in camcorders of all types (see above). The flash technology itself is notable for its high speed, economical power consumption, reliability and shock resistance (due to the absence of moving parts), as well as the small size and weight of storages with their high capacity. At the same time, such memory is quite expensive. Therefore, camcorders most often use removable flash media in the form of memory cards of various types (see “Memory card support”): this allows the user to choose the best option in terms of price/capacity ratio. Another advantage of plug-in modules is the ability to read data from a memory card on another device — for example, a laptop; this greatly simplifies the exchange of footage. And when the card is full, it is enough to replace it with another one — and you can continue shooting. Note that some cameras also have built-in flash-memory blocks (see "Built-in memory"), but the ability to work with cards is usually provided even in such cases.

HDD. Built-in hard disk drive — similar to those used for computers. Of course, the size and weight of such discs in camcorders is noticeably smaller, however, all the main features are the same. So, in terms of 1 GB of volume, they are much...cheaper than flash modules (see above), so they are well suited for creating devices with large volumes of internal memory. On the other hand, HDDs are noticeably heavier, they are sensitive to shocks and drops, they work a little slower, and they consume more energy — after all, during operation, the disk must rotate at a constant speed. In addition, such drives are built-in by definition and have all the corresponding disadvantages — in particular, when the memory is full, you will either have to sacrifice some materials or look for an opportunity to copy them somewhere. To compensate for this shortcoming, many "disk" cameras also provide slots for memory cards; but the HDD is still considered the main carrier .

— SSD. SSD solid state drives are similar to the memory cards described above in their main specifications: they are compact, reliable, resistant to shocks and drops, and have high speed. At the same time, the built-in storages usually works faster than a removable card, and its volume can be comparable to the HDD (see above). The main disadvantage of this option is the high price. In addition, all SSDs have a limit on the number of rewriting cycles, and when the resource is running out, the drive may become unwritable. On the other hand, this number can even now amount to tens of thousands of cycles, various tricks are used to increase the service life, and the technology is constantly being improved — there are promising designs in which this drawback has been completely eliminated.

— DVD. The DVD optical discs used in camcorders are smaller than standard discs — a full-size drive would simply not fit into a compact camera. The volume of such media is also reduced, for a conventional single-layer disc it is 1.4 GB. However, mini-DVDs can be read without problems in almost all DVD drives, which is one of the main advantages of such media: you can immediately view a disc from a camera on a computer or even a household DVD player. Also empty DVD are relatively inexpensive. On the other hand, they seriously lose to memory cards in terms of volume and dimensions, and an accidental scratch on the surface can make such a disc unreadable. In addition, most sold blank DVDs are for one time use, while rewritable ones are rarer and more expensive. As a result of all this, this media format is considered obsolete today and is gradually being replaced by more advanced technologies.

MiniDV (cassette). MiniDV cassettes work on the principle of recording information in digital format on magnetic tape. On the one hand, such media are more bulky than memory cards, and besides, they require the use of complex tape transport mechanisms, which affects the dimensions, price, and power consumption of the cameras themselves. Also working with recorded materials is more difficult — because of the need to rewind the tape to access each individual fragment. At the same time, the recording format provides both good video quality and some advanced features — in particular, it is convenient when rewriting to film. As a result of all this, miniDV cassettes are practically not found among amateur cameras (see "Features"), but they are quite popular in professional models.

Effective megapixels

The number of light sensitive pixels directly involved in the construction of the image. These are the dots on which the “image” projected by the lens onto the matrix falls. In addition to them, there are also service pixels that are not illuminated during camera operation — they provide auxiliary information necessary for processing the resulting image. Also, when calculating effective megapixels, the reserve area required for electronic stabilization is usually not taken into account (see "Image Stabilization").

The value of the number of effective pixels for different modes of operation of the camcorder will also be different. For example, when recording video, many cameras use multiple pixels to build a single dot on the image; this is due to the fact that the sensor resolutions significantly exceed those required for video shooting (for example, the Full HD standard technically corresponds to only 2.07 megapixels). As a result, the image quality depends more on the sensor size (see above) than on the resolution. And among sensors of the same size, high resolution allows user to get better colour rendering and higher clarity (however, not always — a lot also depends on the peculiarities of image processing). If we are talking about photography, then more megapixels means a higher resolution of the resulting image, but the quality of such a picture can be relatively low due to the increased noise level and low sensitivity of each individual pixel.

Aperture

Aperture of a standard video camera lens.

This parameter describes how much the lens attenuates the light output. Usually it is written as a ratio between the diameter of the active hole and the focal length of the lens, while the first value is taken as one and denoted as f — for example, f/1.8 or f/5.6. Moreover, the smaller the number in such a record, the higher the aperture ratio: for example, in our example, the first option is “lighter” than the second. Also note that most lenses with a variable focal length (see above) also have a variable aperture — in such cases it is indicated by the range from maximum to minimum (from a smaller number to a larger one).

A high aperture ratio is important primarily when shooting in low light conditions: it allows you to capture an image without “lifting up” the sensor sensitivity and without creating additional artifacts in the form of noise, and in the photo shooting mode, you can also work with shorter shutter speeds (which is useful for dynamic scenes). In addition, the higher the aperture, the lower the depth of field and the easier it is to get a blurry background. Note that for simple everyday tasks this parameter does not play a decisive role, but in professional shooting it can be very significant.

Video resolution

The maximum video resolution that the camera can capture. Resolution is the size of an image in points (pixels); usually it is written in two numbers, which correspond to the number of pixels horizontally and vertically.

The more pixels in the image — the clearer it is, the better you can see small details on it, however, the size of the video files increases accordingly. In addition, it is worth considering that in order to fully view the footage, you will need a screen of the appropriate resolution — otherwise all the advantages of the image will be negated. And this parameter also significantly affects the price of the device.

The smallest maximum resolution found in modern camcorders is about 720x480; the quality of such a "picture" can be compared with analogue television broadcasting. Resolution 1280x720 corresponds to the HD standard, it can be found among inexpensive TVs and monitors, and 1920x1080 (Full HD) is the most popular option among mid-range and top-class video devices. The maximum resolution used in modern consumer electronics (including camcorders) is 4K, 4096x2160; it is typical for the most advanced devices.

The vast majority of cameras are able to work not only with the maximum resolution, but also with several “more modest” options — for those cases where small file volumes are more important than high resolution.

Frame frequency

The highest frame rate provided by the camera when shooting video. The minimum frequency for normal viewing is the classic 24 fps used in cinema. At the same time, most modern video cameras are capable of providing up to 50 – 60 fps, and even higher frequencies can be used for the slow motion effect.

In fact, this indicator is important primarily when shooting dynamic scenes. The higher the frame rate, the smoother the fast motion will look in the frame, the less jerky it will be and the more pleasant the overall impression of the image will be. The reverse side of this is an increase in the size of recorded files (all other things being equal). Therefore, the frame rate can be made adjustable so that the operator can choose the best option for a particular situation.

Recording formats

Video file formats that the camera can use to store recorded footage. If you want to view these materials using a separate device (player, media centre, etc.), you should make sure that this player supports the appropriate formats, otherwise conversion may be necessary.

Video recording speed

The data transfer speed provided by the camera when recording video. This parameter is also called bitrate (i.e., the number of bits per unit of time). For any file format used for recording, the general rule is that the higher the bitrate, the better the image quality (especially for formats that use lossy compression). On the other hand, high speed have appropriate requirements for the capabilities of the memory cards used — for more details, see "Memory card support"; and it increases the size of the file accordingly. Therefore, many modern camcorders are able to work with different bitrates; this allows you to choose the best option depending on what is more important for you at the moment — maximum quality or the ability to work with a slow card.

At the same time, we note that in terms of quality, this parameter is important mainly for professional video shooting. If you need a camera for amateur purposes, there is no need to look for the maximum bitrate: after all, such models (and memory cards for them) cost accordingly.

Shutter speed

The range of shutter speeds in which the camera is capable of operating during the shooting process.

Initially, shutter speed is the time during which light affects the photosensitive material (film) when shooting a single frame. For digital sensors, this is the period of time during which an image is read from the sensor to build a separate frame. When shooting video, this interval cannot be more than 1/n, where n is the frame rate (see above), but it can be less — for example, shooting at a frame rate of 30 fps and shutter speed of each frame 1/60 s. There are no such restrictions for the photo mode.

Long exposures are good because they allow the sensor to take in more light — accordingly, the “picture” is brighter, which is especially important in low light. At the same time, they increase the likelihood of getting a blurry image — due to the rapid movement of objects in the frame, the operator's hand shaking and other random camera movements that even the stabilization system is unable to compensate for. This effect can be useful for artistic motion blur, especially when shooting video, but in photo mode it is most often undesirable. Fast shutter speeds, on the other hand, allow you to get clear shots, but with less light, and in the case of video, even with the effect of sharp, jerky movements.

Accordingly, different exposure time options will be optimal for each situation, and the wider their range, the more opportunities the came...ra has to adjust to specific conditions.

White balance

Presets and white balance adjustment modes provided by the camera.

White balance is a characteristic that describes the qualities of the lighting of the scene and the distortion that this lighting introduces into the colours perceived by the camera. Its used because modern digital sensors are unable to independently adjust to different light sources, as the human eye does. In fact, this means that the same object shot under lighting with different colour temperatures (for example, under a “warm” incandescent lamp and a “cold” fluorescent lamp) will look different without adjustment. To avoid this, the white balance setting is applied.

The main options for such a setting used in modern cameras are as follows:

— Auto. In accordance with the name, in this mode, the camera electronics independently evaluates the specifics of the illumination of the scene being shot and makes appropriate corrections to the colour reproduction. This adjustment is the most convenient for the operator, because. does not require any additional actions from him — everything is done by automation. At the same time, no such adjustment system is perfect, and does not always provide 100% white balance for the current situation. Therefore, even in the simplest models like pocket ones (see "Features"), this option is rarely the only one, not to mention professional equipment.

— Presets. The ability to select white balance from several options that correspond to...standard shooting conditions — for example, “sunny day”, “cloudy”, “fluorescent lamp”, “incandescent lamp”, etc. Such a system is quite simple even for inexperienced users and at the same time quite reliable and versatile, although its specific capabilities directly depend on the number of presets.

— Manual. Manual white balance setting assumes that the operator himself “tells” the camera which object to consider pure white — based on this, the electronics calculate the lighting characteristics (unlike automatic mode, when the reference object is also determined without user involvement). The easiest way to do this is to use a regular sheet of paper, but the procedure also works with neutral grey objects. Manual mode allows you to very accurately set the white balance for a particular scene, but it requires some time and appropriate skills — and therefore is used mainly in professional camcorders.

— Temperature control. This function allows you to set a specific value for the colour temperature of the light source (in kelvins) — it is this temperature that will correspond to the white balance when shooting. This setup format is faster and more convenient than manual setup, but is not widely used. This is due to the fact that it is well suited only for studio conditions, where the characteristics of each light source are precisely known — in other cases, manual adjustment is usually more reliable.
Price graph
Sony HXR-NX5E often compared
Sony DCR-VX2200E often compared