Укр|Eng|Рус
Ukraine
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison Deepcool LS720 vs Deepcool FC120-3 IN 1

Add to comparison
Deepcool LS720
Deepcool FC120-3 IN 1
Deepcool LS720Deepcool FC120-3 IN 1
Compare prices 27Compare prices 26
User reviews
0
0
1
0
TOP sellers
Main specs
Featuresfor CPUfor case
Product typeliquid coolingfan
Fan
Number of fans33
Fan size120 mm120 mm
Fan thickness25 mm
Bearinghydrodynamichydrodynamic
Min. RPM500 rpm500 rpm
Max. RPM2250 rpm1800 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow85.85 CFM61.91 CFM
Static pressure1.83 mm H2O
replaceable
Lighting
Lighting colourARGBARGB
Lighting syncmulti compatibilitymulti compatibility
Noise level33 dB28 dB
Radiator
Heatsink materialaluminium
Plate materialcopper
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
AMD AM5
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Intel 1700
 
 
 
 
 
 
 
 
 
 
 
Liquid cooling system
Heatsink size360 mm
Pump size86x74x57 mm
Pump rotation speed3100 rpm
Pipe length410 mm
Pump power source3-pin
General
Power source
4-pin /3-pin ARGB/
4-pin
Mount typebilateral (backplate)bolts
Manufacturer's warranty3 years
Dimensions
402x120x27 mm /radiator/
120x120x25 mm
Weight1607 g452 g
Added to E-Catalogjuly 2022june 2022

Features

The component of a computer system for which the cooling system is designed.

Nowadays, two types of Cooling system are most widely used — for CPU and for the case. Other solutions are also being produced — for video cards, RAM, hard drives, etc.; however, in most cases, such computer components either do not require special cooling systems at all (hard drives are a typical example), or are equipped with them initially (video cards).

COs for CPUs most often have the format of an active cooler or a water cooling system (see "Type"). In this case, in both cases, the design usually provides for a substrate — a contact plate adjacent directly to the processor. Heat from the substrate is transferred to the cooling unit using heat pipes (in coolers) or a circuit with a circulating coolant (in liquid systems). Heatsinks are also produced for CPUs — they are designed mainly for low-power CPUs with low heat dissipation; when installing such a component, special attention should be paid to the quality of the cooling of the case.

In turn, COs for cases are made exclusively in the form of fans, since their task is not to cool a strictly defined component, but to remove hot air from the entire volume of the system unit.

Product type

Fan. Classic fan — a motor with blades that provides air flow; it also includes multi-fan kits. Anyway, you should not confuse such devices with coolers (see below) — fans do not have heatsinks. Almost all solutions of this type are designed for enclosures (see "Intended use"), only a few models are designed for "blowing" hard drives or chipsets.

Radiator. Thermally conductive material construction with a special ribbed shape. This shape provides a large area of contact with air, as a result — good heat transfer. Radiators do not consume energy and operate absolutely silently, but they are not very efficient. Therefore, they are extremely rare in their pure form, and such models are intended either for low-power PC components with low heat dissipation (energy-efficient processors, hard drives, etc.), or for assembling an active cooler (see below) from a separately purchased fan and radiator (this option is found among solutions for video cards).

Active cooler. A device in the form of a radiator with a fan installed on it; however, in many models, the heatsink does not directly contact the cooled component, but is connected to it using heat pipes, while air is blown sideways (the so-called tower layout, especially popular in systems for the CPU; for more details, see "Blowing the air flow") . Anyway, such designs are, on the one hand, relati...vely simple and inexpensive, and, on the other hand, quite effective, which makes them an extremely popular type of Cooling system. In particular, it is in this format that most solutions for CPUs are produced (see "Intended use"), and in general coolers can be used for almost any component of the system, except for the case.

Water cooling. Water cooling systems consist of three main parts: a water block in direct contact with the cooled component (usually a processor), an external cooler, and a pump (separate or built into the cooler). These components are connected by hoses through which water (or other similar coolant) circulates — it provides heat transfer. And the cooling block is usually a cooler — a system of fans and heatsinks that dissipates heat energy into the surrounding air. Water systems are noticeably more efficient than active coolers (see above), they are suitable even for very powerful and "hot" CPUs, which traditional coolers can hardly cope with. On the other hand, this type of cooling is quite bulky and difficult to install, and it is not cheap.

— A set of LSS. Kit for self-assembly of liquid (water) cooling system. The difference between such solutions and conventional water cooling (see above) lies in the fact that in this case the entire system is supplied as a set of parts, from which the user must assemble the finished coolant himself (whereas in traditional water systems, the matter is usually limited to connecting hoses and filling coolant). Such a format significantly expands the user's options in terms of installation: you can independently choose individual layout nuances, replace some regular parts, supplement the design with third-party elements, etc. On the other hand, the installation itself turns out to be much more complex than traditional water systems. Therefore, very few LSS kits are produced, and they are designed mainly for enthusiast modders who like to experiment with the design and construction of their PCs.

— backplate. A solid metal plate used as a fastener for the cooling system. Serves to prevent the motherboard or video card from bending when deploying a heat dissipation system, and also provides passive cooling for the rear side of those modules with which it is adjacent.

- Water block VRM. A water block that provides efficient cooling of the elements of the VRM (Voltage Regulator Module) CPU power subsystem.

- CPU waterblock. Heat exchanger made of copper or nickel, designed to remove heat from the CPU through the coolant. Used in computer water cooling systems. Most often, processor water blocks are supplied with mounts for certain processor platforms.

- GPU water block. Liquid cooling blocks for the most efficient heat removal from the video card. Similar solutions are produced for a specific group of video cards on a single GPU. GPU water blocks consist of two main parts: the upper one, where a copper alloy heat sink is located, a plastic overlay with liquid channels and a casing to stiffen the structure, as well as a metal plate at the bottom of the block on the reverse side of the printed circuit board.

— A set of fasteners. A set of fasteners for mounting cooling systems on computer motherboard elements. Issued for specific socket versions.

Fan thickness

This parameter must be considered in the context of whether the fan will fit into the computer case. Standard case fans are available in the order of 25 mm in thickness. Low-profile coolers with a thickness of about 15 mm are designed for small-sized cases, where saving space is extremely important. Fans of large thickness (30-40 mm) boast high cooling efficiency due to the increased impeller dimensions. However, they are noisier than standard models at the same speed and do not always fit into the case normally, sometimes touching other components.

Max. RPM

The highest speed at which the cooling system fan is capable of operating; for models without a speed controller (see below), this item indicates the nominal rotation speed. In the "slowest" modern fans, the maximum speed does not exceed 1000 rpm, in the "fastest" it can be up to 2500 rpm and even more.

Note that this parameter is closely related to the fan diameter (see above): the smaller the diameter, the higher the speed must be to achieve the desired airflow values. In this case, the rotation speed directly affects the level of noise and vibration. Therefore, it is believed that the required volume of air is best provided by large and relatively "slow" fans; and it makes sense to use "fast" small models where compactness is crucial. If we compare the speed of models of the same size, then higher speeds have a positive effect on performance, but increase not only the noise level, but also the price and power consumption.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

replaceable

The ability to replace a regular fan by the user himself — without contacting a service centre or repairmen. The maximum that may be required for such a procedure is the simplest tools like a screwdriver; sometimes they are even initially included in the cooling system kit.

The fan, as the most mobile part of any cooling system, is more prone to breakdowns and failures than other parts. In cases like this, it's cheaper (and often smarter) to replace just that part rather than buying a whole new system. Also, if desired, you can change a working fan — for example, to a more powerful or less noisy one.

Noise level

The standard noise level generated by the cooling system during operation. Usually, this paragraph indicates the maximum noise during normal operation, without overloads and other "extreme".

Note that the noise level is indicated in decibels, and this is a non-linear value. So it is easiest to evaluate the actual loudness using comparative tables. Here is a table for values found in modern cooling systems:

20 dB — barely audible sound (quiet whisper of a person at a distance of about 1 m, sound background in an open field outside the city in calm weather);
25 dB — very quiet (normal whisper at a distance of 1 m);
30 dB — quiet (wall clock). It is this noise that, according to sanitary standards, is the maximum allowable for constant sound sources at night (from 23.00 to 07.00). This means that if the computer is planned to sit at night, it is desirable that the volume of the cooling system does not exceed this value.
35 dB — conversation in an undertone, sound background in a quiet library;
40 dB — conversation, relatively quiet, but already in full voice. The maximum permissible noise level for residential premises in the daytime, from 7.00 to 23.00, according to sanitary standards. However, even the noisiest cooling systems usually do not reach this indicator, the maximum for such equipment is about 38 – 39 dB.

Heatsink material

Copper. Copper has a high thermal conductivity and provides efficient heat dissipation, but such radiators are quite expensive.

Aluminium. Aluminium is cheaper than copper, but its thermal conductivity, and, accordingly, its efficiency is somewhat lower.

Aluminium/copper. Combined design — usually, a radiator is made of aluminium, and heat pipes are made of copper. This combination achieves good performance without a significant increase in cost. This type of heatsink applies only to active coolers.
Price graph
Deepcool LS720 often compared
Deepcool FC120-3 IN 1 often compared